Reasoning and Problem Solving Step 5: Using Scale Factors

National Curriculum Objectives:

Mathematics Year 6: (6R3) Solve problems involving similar shapes where the scale factor is known or can be found

Differentiation:

Questions 1, 4 and 7 (Problem Solving)
Developing Find the perimeter of the original shape using the given scale factor. Involving whole numbers only.
Expected Find the perimeter of the original shape using the given scale factor. Involving whole numbers and decimals to one decimal place.
Greater Depth Find the perimeter of the original shape using the given scale factor. Involving decimals to two decimal places.

Questions 2, 5 and 8 (Reasoning)
Developing Explain if a given statement is correct or not. Involving whole numbers only. Expected Explain if a given statement is correct or not. Involving whole numbers and decimals to one decimal place.
Greater Depth Explain if a given statement is correct or not. Involving decimals to two decimal places and some scaled factors can increase by a half.

Questions 3, 6 and 9 (Problem Solving)

Developing Identify the measurements of the original shape using the given scale factor. Involving whole numbers only.
Expected Identify the measurements of the original shape using the given scale factor. Involving whole numbers and decimals to one decimal place.
Greater Depth Identify the measurements of the original shape using the given scale factor. Involving whole numbers and decimals and some scaled factors can increase by a half.

More Year 6 Ratio resources.

Did you like this resource? Don't forget to review it on our website.

4a. This shape has been enlarged by a scale factor of 4. Find the perimeter of the original shape.
12.4 cm

Not to scale
5a. Mohammad says,

Is he correct? Explain your answer.
K

Not to scale
6a. This triangle was enlarged by a scale factor of four.
A. 8.8 cm

C. 12.8 cm

What were the measurements of the original triangle?

4b. This shape has been enlarged by a scale factor of 3 . Find the perimeter of the original shape.

Not to scale
5b. Ciara says,

If I enlarge the shape by a scale factor of 4 , the new perimeter would be 60 cm .

Is she correct? Explain your answer.
Not to scale
6b. This triangle was enlarged by a scale factor of three.
A. 6.6 cm

What were the measurements of the original triangle?

7a. This square has been enlarged by a scale factor of 4 . Find the perimeter of the original shape.	7b. This shape has been enlarged by a scale factor of 3 . Find the perimeter of the original shape.
	9.63 cm
12.08 cm	7.35 cm
$\xrightarrow{\text { G0 }}$ Not to scale PS	¢0\% Ps to scale
8a. Ashleigh says,	8b. Roberto says,
If I enlarge the shape by a scale factor of 3.5 , the new area will be $112.7 \mathrm{~cm}^{2}$.	If I enlarge the shape by a scale factor of 2.5 , the new area will be $50.88 \mathrm{~cm}^{2}$.
4.6 cm	$4.24 c m$
2cm	3cm
Is she correct? Explain your answer. Not to scale	Is he correct? Explain your answer. Not to scale
9a. This shape was enlarged by a scale factor of 2.5.	9b. This shape was enlarged by a scale factor of 1.5.
A. 10 cm	A. 6 cm
	B. 4.5 cm
What were the measurements of the original shape?	What were the measurements of the original triangle?
Not to scale PS	Not to scale

Reasoning and Problem Solving

Using Scale Factors

Reasoning and Problem Solving

 Using Scale Factors
Developing

1a. 6 cm
2a. No because the perimeter of the original shape is 16 cm . The new perimeter would be 32 cm .
3a. A: $3 \mathrm{~cm}, \mathrm{~B}: 2 \mathrm{~cm}, \mathrm{C}: 5 \mathrm{~cm}$

Expected

4a. 10.6 cm
$5 a$. Yes because the perimeter of the original shape is $14.6 \mathrm{~cm} .14 .6 \times 4=58.4 \mathrm{~cm}$ 6a. A: $2.2 \mathrm{~cm}, \mathrm{~B}: 4.1 \mathrm{~cm}, \mathrm{C}: 3.2 \mathrm{~cm}$

Greater Depth

7a. 12.08 cm
8a. Yes because the sides increase to 16.1 cm and $7 \mathrm{~cm} .16 .1 \mathrm{~cm} \times 7 \mathrm{~cm}=$ $112.7 \mathrm{~cm}^{2}$
9a. A: $4 \mathrm{~cm}, \mathrm{~B}: 2 \mathrm{~cm}, \mathrm{C}: 3 \mathrm{~cm}$

Developing

1b. 12 cm
2b. Yes because the perimeter of the original shape is 18 cm . The new perimeter would be 54 cm .
3b. A: $4 \mathrm{~cm}, \mathrm{~B}: 2 \mathrm{~cm}, \mathrm{C}: 3 \mathrm{~cm}$

Expected

4b. 12.4 cm
5b. No because the perimeter of the original shape is $12 \mathrm{~cm} .12 \times 4=48 \mathrm{~cm}$ not 60 cm . That is a scale factor of 5 .
6b. A: $2.2 \mathrm{~cm}, \mathrm{~B}: 4.3 \mathrm{~cm}, \mathrm{C}: 3.1 \mathrm{~cm}$

Greater Depth

7b. 11.32 cm
8b. No because the sides increase to 10.6 cm and $7.5 \mathrm{~cm} .10 .6 \times 7.5=79.5 \mathrm{~cm}^{2}$ not $50.88 \mathrm{~cm}^{2}$.
9b. A: $4 \mathrm{~cm}, \mathrm{~B}: 3 \mathrm{~cm}, \mathrm{C}: 2 \mathrm{~cm}$

