Methods of Calculation

Addition

1．Practical addition of real objects．

2．Use of a structured number line to add．

3．Partitioning to add．

Add

回回回回
and必

By partitioning and recombining

$$
\begin{gathered}
30+40=70 \\
5+7=12 \\
70+12=82
\end{gathered}
$$

Addition Continued...

4. Use of an unstructured number line.
$37+48=$

Addition Continued...

5. Expanded horizontal method, leading to columnar addition:

Adding the least significant digit first.
$235+123=$
Estimate: $235+123$ is nearly $\mathbf{2 4 0} \mathbf{+ 1 2 0}$ so estimate answer should be near 360 .
Illustration of how to use Dienes equipment to ensure children have an understanding of place value when using columnar addition.

Addition Continued...

6. Columnar addition (formal written method):

When children are confident working with larger numbers using the previous strategies, they will be introduced to 'carrying' digits. 2856+1095

Estimate: 2900+1100 = 4000 Answer should be less as I have rounded up.

$$
\begin{array}{rr|r}
47 & 368 \\
+\frac{76}{123} & +\frac{493}{861} & +1095 \\
\hline \frac{3951}{11} & \frac{11}{11}
\end{array}
$$

These methods will also be used for larger numbers and decimal calculations

Subtraction

1. Subtraction as taking away from a group:

128345678910
-•• २ く
$5-2=3$
six take away two leaves four'
2. Subtracting by counting back and on: children begin to use numbered lines to support their own calculations, initially counting back in ones before beginning to
work more efficiently. Number line with all numbers labelled

$$
13-5=8
$$

3. Finding the difference by either counting on or back.

Finding the difference on a number line.

Comparing two sets: comparison or difference. Note: Finding the difference is often the most efficient
 way of solving a subtraction problem,
e.g. 61-59
$2,003-1,997$

Subtraction Continued...

4. Subtracting TU - U and TU - TU: use of an unstructured number line.

Use empty number lines to find the difference by bridging through multiples of ten.

Subtract by starting with the first number and partitioning the second, i.e.
74-27
$74-20=54$
$54-4=50$
$50-3=47$

Subtraction Continued...

5. First stage of column method, including expanded method:
-Written recording should follow teacher modelling around the size of numbers and place value using a variety of concrete materials, e.g. straws, Numicon, Dienes and place-value cards.

$$
\begin{gathered}
363-147=216 \\
5013 \\
300+60+3 \\
\frac{100+40+7}{200+10+6}=216
\end{gathered}
$$

$$
\begin{aligned}
5013 & \text { Illustration of how to use Dienes equipment to ensure children }
\end{aligned}
$$ understand transference of numbers when using columnar subtraction.

Subtraction Continued...

6. Second stage of column method: the concept of exchange is introduced through continued use of practical equipment (manipulatives).

Children will eventually move on to subtracting larger numbers as well as decimal numbers.

The aim is for all children to reach this stage.

Multiplication

1. Developing early conceptual understanding of multiplication: practical multiplication - $2 \times 4 \quad 2$ lots of 4 .

2. Understanding multiplication as repeated addition: use of arrays and number lines. 4×5

Number lines:
$6 \times 4=24$

So: ‘Six taken four times"

Multiplication continued...

3. Relate multiplying a 2-digit by 1-digit number using repeated addition and arrays to represent

4. Relate multiplying a 3/2-digit by 1 -digit number with arrays towards using long/short multiplication

Relate multiplying a 3/2-digit by 1-digit number, now also setting it out as short multiplication.

$$
\begin{aligned}
& 7 \times 13=91 \\
& 7 \times 10=70 \\
& 7 \times 3=21 \\
&=91 \\
& \hline
\end{aligned}
$$

Multiplication continued...

5. Relate multiplying a 4/3/2-digit by 1/2-digit number with grid to using long multiplication.

6. Relate multiplying a 4/3/2-digit by 1/2-digit number with grid to using short multiplication.

Children will eventually move on to multiplying larger numbers as well as decimal

Division

1. Sharina or Grouping - Division is initially represented pictorially.

$$
6 \div 2=3
$$

Sharing and grouping are two totally different concepts that children need to understand.

6 sweets shared hetween 2 neople. How many each?

There are 6 people in a room. Put them into groups of 2 . How many groups can you make?
2. Using a number line and arrays to show division.

Number lines and arrays:
$12 \div 3=4$

$\left.\square^{3}\right)^{3} 0^{3} 0^{3}$

$$
15 \div 5=3
$$

Division continued...

3. Dividing a 2-digit by 1-digit number, representing this efficiently on a number line.

$$
6 \times 6=36 \quad 10 \times 6=60
$$

Children use an empty number line to chunk efficiently.
$96 \div 6=16$

4. Dividing a 3/2-digit by 1-digit number, representing this efficiently on a number line, also in relation to long division

Children use an empty number line to chunk efficiently.
$224 \div 8=28$

$$
8 \times 8=64 \quad 20 \times 8=160
$$

$\begin{array}{r}8 \\ \hline 224 \\ \hline\end{array}$
$20 \times 8=\frac{160}{64}$
$8 \times 8=$

Division continued...

5. Dividing a 4/3/2-digit by 1 -digit number, in relation to long division.

Remainders should be interpreted in the following ways when long division is used:

- as whole numbers
- as fractions
- through rounding in an appropriate way to the context

Long division:
$415 \div 9=46$ and $1 / 9$
46 and $1 / 9$
9415
-360 (9 X 40)

- $\frac{54}{1}(9 \times 6)$

Division continued...

Dividing a 4/3/2-digit by 2/1-digit number, in relation to long

 and then short divisionRemainders should be interpreted in the following way when short division is used:

- through rounding in an appropriate way to the context

Long division
$432 \div 15=284 / 5$
$\begin{array}{lllll} & & & 2 & 8 \\ 1 & 5 & 4 & 3 & 2\end{array}$

$\mathbf{3}$	$\mathbf{0}$	$\mathbf{0}$	
$\mathbf{1}$	$\mathbf{3}$	$\mathbf{2}$	
$-\mathbf{1}$	$\mathbf{2}$	$\mathbf{0}$	
	$\mathbf{1}$	$\mathbf{2}$	

$\frac{12}{15}=\frac{4}{5}$

Short division: $138 \div 6=23$

Answer: $28 \frac{4}{5}$

